

Tetrahedron Letters 42 (2001) 2513-2515

TETRAHEDRON LETTERS

Electrolytic partial fluorination of organic compounds. Part 45: Highly regioselective anodic monofluorination of (*E*)-3-benzylidene-2,3-dihydrochroman-4-ones[†]

Kamal M. Dawood^{a,b} and Toshio Fuchigami^{a,*}

^aDepartment of Electronic Chemistry, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan ^bDepartment of Chemistry, Faculty of Science, Cairo University, Giza, Egypt

Received 9 January 2001; revised 29 January 2001; accepted 2 February 2001

Abstract—Anodic monofluorination at the position α to the oxygen atom of chroman-4-one derivatives was successfully carried out: this is the first selective electrochemical fluorination of fused-type, oxygen-containing heterocyclic compounds. © 2001 Elsevier Science Ltd. All rights reserved.

Chroman-4-one derivatives have been known as inhibitors of HIV-1 that causes AIDS.² They have also drawn much attention due to their broad range of pharmacological activities.³ Moreover, the biological potency of fluorinated heterocycles has been widely documented.⁴ Therefore, considerable efforts have been made to explore new synthetic routes to fluorinated heterocycles. The electrochemical method was found

to be more applicable than the conventional, hazardous chemical methods.⁵ Recently, we developed selective anodic fluorination of flavones⁶ and arylthioethylenecarbonates⁷ as examples of oxygen-containing heterocycles. Crown ethers were also anodically fluorinated; however, α, ω -difluoro products were formed due to ring opening.⁸ On the other hand, furan, benzofuran,⁹ and morpholines¹⁰ were anodically fluori-

Table 1. Anodic fluorination of (E)-3-benzylidene-2,3-dihydrochroman-4-ones (1a-c)

$$\begin{array}{c} 0 \\ -2e, -H^+ \\ 0 \\ -2e, -H^+ \\ F^- \\ 1a_rc \\ 2a_rc \\ 2$$

1,2; a: $Ar = C_6H_5$; **b**: $Ar = 4-CIC_6H_4$; **c**: $Ar = 4-BrC_6H_4$

Run	Substrate	Supporting electrolyte/solvent	Charge passed (F/mol)	Yield (%) ^a
1	1a	Et₄NF·4HF/DME	6.5	72 (64)
2	1a	Et ₄ NF·4HF/DME ^{b,c}	5.5	17
3	1a	Et ₄ NF·4HF/MeCN	3.0	21
4	1a	Et ₄ NF·3HF/DME	7.0	68
5	1a	Et ₃ N·4HF/DME	8.5	52
6	1a	Et ₃ N·3HF/DME	8.5	35
7	1b	Et ₄ NF·4HF/DME	7.0	60 (56)
8	1c	Et ₄ NF·4HF/DME	6.5	59 (58)

^a Calculated on the basis of ¹⁹F NMR spectra and the figures in parentheses are isolated yields.

^b An undivided cell was used.

^c A considerable amount of an unidentified, insoluble white polymeric product was formed.

* Corresponding author. Tel./fax: +81-45-924-5406; e-mail: fuchi@echem.titech.ac.jp

[†] For Part 44, see: Ref. 1.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00216-7

nated; however, their fluorinated products were either not isolable due to their instability or were isolable in very low yields with less selectivity. Therefore, a successful selective anodic direct fluorination at position α to a ring-oxygen atom has not yet been reported.

In this work, we successfully performed, for the first time, a highly regioselective anodic direct fluorination at the position α to the ring-oxygen atom of the biologically active chroman-4-one derivatives **1a–c**. Anodic fluorination of (E)-3-benzylidene-2,3-dihydrochroman-4-one (1a), as a typical example, was conducted with platinum plate electrodes (2×2 cm²) in a 0.3 M solution of a fluoride salt in dimethoxyethane (30 ml) using a divided cell under a nitrogen atmosphere at room temperature. A constant current (6 mA/cm²) was applied until the starting material was completely consumed. The electrolysis results are summarized in Table 1. Only one fluorinated product was obtained and it was identified as (E)-3-benzylidene-2,3-dihydro-2-fluorochroman-4-one (2a) on the basis of its elemental analysis and spectral data.¹¹

As shown in Table 1, a highly regioselective anodic monofluorination of **1a** took place regardless of the electrolytic conditions. It was found that a fluorine atom attacked selectively the position α to the ring-oxygen atom of **1a** to furnish **2a** in moderate to good yields. Among various electrolytic conditions, Et₄NF·4HF/DME using a divided cell (run 1) was the most effective for the formation of the fluorinated product **2a**.

An undivided cell (run 2) was not suitable for anodic synthesis of **2a**. In this case, the fluorination yield decreased drastically due to the formation of an undesirable, insoluble white polymeric product. Acetonitrile (run 3) and $\text{Et}_3\text{N}\cdot3\text{HF}$ (run 6) were also not effective. The regioselective monofluorination of **1a** is depicted in Scheme 1. It was reported that isomerization occurs

readily when the migrating double bond moves into conjugation with an aromatic benzene nucleus.¹² Therefore, it is conceivable that intermediate **B** isomerizes into **C**, followed by preferential attack of a fluoride ion to the cationic intermediate **C** to give **2a**. Benzylic nucleophilic substitution takes place easily; however, there was no evidence for the formation of the benzylic fluorinated product **3a**.

To generalize this interesting finding, we extended the anodic fluorination to other chroman-4-one derivatives **1b**,**c** and similar results were obtained, as shown in Table 1 (runs 7 and 8). In both cases, a fluorine atom was inserted selectively at the position α to the ring-oxygen atom of **1b**,**c** to afford the corresponding 2-fluorochroman-4-ones **2b**,**c** in moderate yields.^{13,14}

Furthermore, anodic fluorination of 3-(4-chlorobenzyl)chromone (4) was similarly attempted as shown in Scheme 2. Interestingly, 2b was obtained in a reasonable yield, but the corresponding fluorinated product 5 was not formed. This result is in sharp contrast to our previous report for the anodic fluorination of flavones.⁶ In the case of flavones, 3-fluoroflavones were formed. Thus, anodic fluorination of chromanone 1b and homoisoflavone 4 provided the same fluorinated product 2b. This result is quite interesting from a mechanistic point of view. A proposed mechanism for the anodic formation of 2b from 4 is outlined in Scheme 3. A fluoride ion is assumed to attack the radical cation **D** to form **E**, which is further oxidized to give the fluorocarbocation F, followed by elimination of a proton from the benzylic methylene group of F to afford the thermodynamically more stable¹⁵ 2fluorochroman-4-one derivative 2b rather than its isomer 5.

In conclusion, we have successfully conducted anodic fluorination at the position α to the ring-oxygen atom of chroman-4-ones. This is the first report of successful

Scheme 1.

Scheme 3.

regioselective electrochemical direct fluorination of fused-type, oxygen-containing heterocyclic compounds where the methodology is of potential synthetic value.

Acknowledgements

The authors would like to thank the Japan Society for the Promotion of Science (JSPS) for financial support (Grant-in-Aid for Scientific Research No. 1299307). They are also grateful to the Kato Foundation for financial support.

References

- 1. Fuchigami, T.; Mitomo, K.; Ishii, H.; Konno, A. J. *Electroanal. Chem.*, in press.
- (a) Ishikawa, T.; Oku, Y.; Tanaka, T.; Kumamoto, T. *Tetrahedron Lett.* **1999**, *40*, 3777; (b) Xu, Z. Q.; Bucheit, R. W.; Stup, T. L.; Flavin, M. T.; Khilevich, A.; Rezzo, J. D.; Lin, L.; Zembower, D. E. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2179.
- (a) Takaoka, K. I.; Shiota, T.; Takeyasu, T.; Muchizuki, T.; Taneda, K.; Ota, M.; Hanabe, H.; Yamaguchi, Y. J. Med. Chem. 1995, 38, 3174; (b) Al-Nakib, T.; Bezjak, V.; Meegan, M. J.; Chandy, R. Eur. J. Med. Chem. 1990, 25, 455.
- 4. Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1991.
- (a) Fuchigami, T. In Advances in Electron Transfer Chemistry; Mariano, P. S., Ed.; JAI Press: CT, USA, 1999; Vol. 6; (b) Fuchigami, T.; Higashiya, S.; Hou, Y.; Dawood, K. M. Rev. Heteroatom. Chem. 1999, 19, 67.
- 6. Hou, Y.; Higashiya, S.; Fuchigami, T. J. Org. Chem. **1999**, 64, 3346.

- Ishii, H.; Yamada, N.; Fuchigami, T. Chem. Commun. 2000, 1617.
- (a) Hou, Y.; Fuchigami, T. Tetrahedron Lett. 1999, 40, 7819; (b) Ishii, H.; Hou, Y.; Fuchigami, T. Tetrahedron 2000, 56, 8877.
- 9. Meurs, J. H.; Eilenberg, W. Tetrahedron 1991, 47, 705.
- Gambaretto, G. B.; Napoli, M.; Franccaro, C.; Conte, L. J. Fluorine Chem. 1982, 19, 427.
- 11. Compound **2a**: mp 69–70°C (AcOEt/hexane); ¹H NMR (CDCl₃) δ 6.76 (d, 1H, J=45.20 Hz), 7.33–7.49 (m, 7H), 7.63 (dd, 1H, J=8.58, 7.26 Hz), 7.96 (s, 1H), 8.17 (d, 1H, J=7.92 Hz); ¹³C NMR (CDCl₃) δ 87.75 (d, J=173.3 Hz), 118.06, 123.77, 124.06, 125.33, 125.71, 126.19, 128.44, 128.68, 133.87, 137.48, 137.79, 153.53, 153.69, 156.15, 175.54; ¹⁹F NMR δ –101.40 (d, J=45.04 Hz); MS (m/z) 254 (M⁺). Anal. calcd for C₁₆H₁₁FO₂: C, 75.58; H, 4.36. Found: C, 75.92, H, 4.55.
- 12. Andrieux, J.; Barton, D. H. R.; Patin, H. J. Chem. Soc., Perkin Trans. 1 1977, 359.
- 13. Compound **2b**: mp 93–94°C (AcOEt/hexane); ¹H NMR (CDCl₃) δ 6.69 (d, 1H, J=45.19 Hz), 7.29–7.42 (m, 6H), 7.62 (dd, 1H, J=8.58, 6.93 Hz), 7.98 (s, 1H), 8.14 (d, 1H, J=7.91 Hz); ¹³C NMR (CDCl₃) (DEPT) δ 87.25 (d, J=173.3 Hz), 118, 125.33, 125.53, 127.6, 127.7, 128.53, 133.89, 153.15, 153.33 (CH's), 123.29, 123.6, 134.44, 136.17, 156.04, 175.33 (C's); ¹⁹F NMR δ –102.50 (d, J=45.04 Hz); MS (m/z) 288 (M⁺). Anal. calcd for C₁₆H₁₀ClFO₂: C, 66.56; H, 3.49. Found: C, 66.74, H, 3.77.
- 14. Compound **2c**: mp 80–81°C (AcOEt/hexane); ¹H NMR (CDCl₃) δ 6.69 (d, 1H, *J*=45.19 Hz), 7.34–7.52 (m, 6H), 7.67 (dd, 1H, *J*=7.91, 6.93 Hz), 7.99 (s, 1H), 8.17 (d, 1H, *J*=7.92 Hz); ¹⁹F NMR δ –102.76 (d, *J*=45.04 Hz); MS (*m*/*z*) 333 (M⁺). Anal. calcd for C₁₆H₁₀BrFO₂: C, 57.68; H, 3.03. Found: C, 57.59, H, 3.25.
- Hoshino, Y.; Takeno, N. Bull. Chem. Soc. Jpn. 1994, 67, 2873.